

Wireshark ohne Netzwerk

OpenRheinRuhr
9. November 2013

Martin Kaiser

What?

● Wireshark is the standard tool for capturing and
analyzing TCP/IP network traffic

– supports many protocols

– runs on different platforms

– allows for fine-grained filtering
● this is useful for all kinds of captured data -

not only when it comes from a TCP/IP network

Overview

● getting external data into Wireshark
● useful Wireshark features
● possible approaches
● examples
● adding a new protocol

About me
● writing embedded software for Digital TVs

● involved in creating the CI+ Pay-TV standard

● Wireshark Core Developer

● http://www.kaiser.cx

● existing data logger, driver software

● output data

– bytes in a text file

– some proprietary format
● how can I read and analyze

such data with Wireshark?

– offline

– or ideally in real time

Getting external data into Wireshark

Wireshark
● monitoring of communication
● everything is packet-based
● only passive monitoring

– no replay, no data injection, etc.

GUI: Interface list
● interface list

– select
multiple interfaces
for capturing

– refresh the
interface list

● named pipes

– GUI dialogue to add a pipe to the interface list
● not permanent

– similar to wireshark -i <name>

● File / Import from Hex Dump...

– input file contains
raw bytes and offsets

– select a
Data Link Type
(DLT)

● similar to the command
line tool text2pcap

GUI: Import from hex dump

Architecture of Wireshark
● libpcap, winpcap

● dumpcap

● Wireshark

– communication with
dumpcap via pipe

– wiretap

– gui: gtk, qt, command line

– display filter engine

– dissectors

– ASN.1 engine

– plugin interface

– lua, python interfaces

Protocols
● approx. 1100 protocols in Wireshark 1.10

– networking, USB, mobile phone, digital tv, building
automation, ...

● frame is always the "lowest layer" protocol

● link between protocols

– DLT == Data Link Type

● www.tcpdump.org/linktypes.html

– TCP, UDP port, ...

– basically, any filterable expression can be used as
a selector for the upper layer protocol

– to go from protocol A to protocol B, the code for A must support
selection of upper-layer protocols

● protocol preferences

File formats
● PCAP format

– one global header
● DLT
● snaplen, ...

– one record per captured packet
● trimmed to snaplen

● PCAPng

– multiple interfaces

– packet comment, capture comment, ...

Possible approaches

● encapsulate your data into network
packets

● add support for your logger's file format
● convert your output data into PCAP(ng)

– offline
– in real-time

● add an interface for your logger to the
interface list

Encapsulate into network packets

● encapsulate your data e.g. into UDP packets
to localhost:6000

● major disadvantage: dummy ethernet, IP, UDP
layers

● capture/display filter to ignore other packets

● discard incoming packets on localhost:6000

– socat -u UDP-RECV:6000 /dev/null

Add support for your file format

● read-only support is easy
● detect your file type
● read a packet

– sequential read
– random access

Convert to PCAP - text2pcap
$ cat data.txt
0 0a 0b 0c
3 01 02 03
0 a0 a1

$ text2pcap -l 50 data.txt data.pcap (-l <data link type>)
Input from: data.txt
Output to: data.pcap
Output format: PCAP
Wrote packet of 6 bytes.
Wrote packet of 2 bytes.
Read 2 potential packets, wrote 2 packets (64 bytes).

Convert to PCAP - in real time
● modify your data logger's software to output PCAP

– libpcap API (ANSI C)
● bindings for perl, python, ...

● send PCAP output to a named pipe

– named pipe supports only PCAP (not PCAPng)

– pipe read blocks until the PCAP header was read
● start / stop capture

– both in Wireshark and in the data logger software

– they're not synchronised

Extcap
● new interface in Wireshark's interface list

– provided by a separate executable
(so-called extcap)

● Wireshark calls your extcap for

– interface detection

– interface configuration

– start / stop capturing
● extcap drives the data logger, sends captured

data to a named pipe

● will be available in the next major release

Example: capturing USB data

● works only if supported by OS / libpcap
● Linux

– modprobe usbmon
– make /dev/usbmon* readable for

the wireshark user
● Windows: USBPcap

– http://desowin.org/usbpcap/

Example: HDCP

● HDCP uses an I2C bus on two pins of an HDMI
cable

● logging hardware writes a text file

● DLT for I2C

– www.tcpdump.org/linktypes.html

– needs a protocol-specific header
● use text2pcap for converting to a PCAP file

Example: Digital TV

● MPEG2 Transport Stream (TS)

– contains multiple TV programs

– a sequence of 188 byte packets

– packet header includes a
packet identifier (PID)

● all packets with the same PID are one
Elementary Stream (ES)

● an ES may contain audio, video or one
of several tables with additional infos

Example: Digital TV (II)
● read-only support for MPEG2 TS files

(which contain only the raw TS packets)
● TS header, audio, video, tables are

implemented as protocols

– protocol selection based on PID

Extcap demo

A protocol dissector
● where do I attach it to?

– DLT, TCP/UDP port, USB class, ...
● the dissector is called for each matching

packet

– parameters: tvbuff, pinfo, tree
● dissect your data
● generate tree entries, subtrees
● populate the columns
● create filterable items

Thank you for your attention.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

