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What?

● SSL/TLS is the most widely used security 
protocol on the Internet

● there's lots of parameters, options, extensions 
that make it difficult to understand SSL/TLS

– create simple test scenarios to get started
● Wireshark can help analyze and understand 

SSL/TLS

– in some cases, it's possible to decrypt 
captured traffic



  

Overview

● purpose of TLS
● record layer
● handshake
● test setup
● Wireshark and TLS
● decrypting TLS traffic with Wireshark



  

About me
● writing embedded software for Digital TVs

● involved in creating the CI+ Pay-TV standard

● Wireshark Core Developer

● http://www.kaiser.cx



  

● Transport Layer Security

– successor of SSL

– TLS 1.2 defined in 2008, not widely deployed
● client and server

● runs on top of TCP

● transparent secure channel

– encryption

– authentication

– compression

TLS
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TLS overview

TCPTCP

TLS record layerTLS record layer

Application dataApplication data HandshakeHandshake AlertAlert Change cipher specChange cipher spec



  

Record layer

type version length

● the sequence number is not part of the message

● type is Application Data, Handshake, ...

● checksum is HMAC (key, hash algorithm)

● (compress-then-) sign-then-encrypt

sequence number

encryptedencrypted

signedsigned

data checksum padding



  

Key material
● pseudorandom function (PRF)

● pre-master secret (“result of the handshake”)

● master secret
= PRF(pre-master secret, client random, server random, ...)

● key block
= PRF(master secret, client random, server random, ...)

● split the key block into six keys
– client HMAC key, server HMAC key

– client encryption key, server encryption key

– client init vector (IV), server init vector



  

Handshake

● agree on a set of ciphers
● client verifies the server's identity
● calculate the pre-master secret
● derive master secret and required 

keys
● verify the integrity of the handshake 

messages



  

Handshake
client server

supported ciphers, random number

selected cipher, random number, certificate

encrypted pre-master secret

checksum of handshake messages

checksum of handshake messages

● verify server certificate
● create pre-master secret
● encrypt it with server's 

public key



  

Test setup

● a simple TLS client and server

– OpenSSL command line tools
● server's private key

– openssl genrsa -out serverKey.pem 2048
● server certificate

– openssl req -x509 -new -key serverKey.pem \
-out serverCert.pem \
-subj "/C=DE/ST=Hessen/L=Frankfurt/
           O=private/OU=Martin Kaiser's server/
           CN=test.kaiser.cx/emailAddress=test@kaiser.cx"



  

Test client & server

● serve an info page on port 4433

– openssl s_server -accept 4433 \
-cipher AES256-SHA -no_comp -www \
-cert serverCert.pem -key serverKey.pem

– offer only one set of algorithms

– don't support compression
● client

– openssl s_client -no_ticket -tls1

– localhost:4433 is the default target



  

Wireshark and SSL/TLS

● SSL and TLS up to version 1.2 are supported

● ASN.1 framework
– dissect the server's X.509 certificate

– generate protocol dissectors from ASN.1 modules

● decrypt captured TLS traffic
– using the server's private key

– using the master secret

– gnutls, libgcrypt are required for this
● wireshark -v



  

Demo: capture TLS traffic



  

Useful Wireshark settings

● in our example, TCP port 4433 is SSL
→ Decode As

– this setting can be saved
● both client and server are on localhost

– add columns for source and destination port
● Display Filter ssl

● Follow TCP stream, Follow SSL stream

● Time Shift to see the time difference between 
TLS messages



  

Cipher Suites

● Cipher Suite == a set of algorithms

– type of server's keypair

– algorithm used for negotiating
the pre-master secret

● some cipher suites use server's keypair 
directly

– record-layer's encryption algorithm

– record-layer's MAC algorithm
● TLS_<key-exchange>_<auth>_WITH_<enc>_<mac>



  

Cipher Suite Example

● TLS_RSA_WITH_AES_256_CBC_SHA

– server has an RSA keypair

– RSA is used for pre-master secret calculation

– record layer encryption uses AES 256
in CBC mode for encryption

– record layer uses HMAC-SHA-1 for message 
authentication



  

Decrypt TLS traffic using the server's private key

● Edit / Preferences / Protocols / SSL /
RSA keys list

● Protocol data simply shows the decrypted bytes

● Wireshark decrypts the pre-master secret,
calculates the master secret and the key block



  

Demo: decrypt TLS traffic



  

Export PDU mechanism

● strip off all layers below the TLS payload

● the resulting packets can be interpreted
without any key material

● File / Export PDUs to file

● experimental



  

Session resumption

● speed up the handshake, skip the public key calculations

● initial connection

– server assigns a session ID

– client and server cache the master secret
● subsequent connection

– client sends the session ID to resume the session

– client and server use the cached master secret
● new random numbers

→ unique key material for each connection
● decryption with the server's private key requires a 

capture with the initial handshake



  

Session resumption in practice
● openssl s_client -no_ticket -tls1 -sess_out s1.dat

– cache information for session resumption
● openssl sess_id -in s1.dat -noout -text

– display the cached session info
● openssl s_client -no_ticket -tls1 -sess_in s1.dat

– resume a session based on cached information



  

Demo: session resumption



  

Ephemeral cipher suites

● use an ephemeral (short-lived) key for 
generating the pre-master secret

– server's key pair is not used directly

– ephemeral key is linked to the
server's key pair

● additional handshake message 
ServerKeyExchange

● forward secrecy:
if the server's private key is compromised, it 
can't be used for decrypting captured TLS traffic



  

Testing an ephemeral cipher suite

● DHE-RSA-AES256-SHA

– server certificate contains an RSA keypair

– Diffie-Hellman is used for calculating the pre-
master secret

– the server signs its Diffie-Hellman public key with 
its RSA private key

– the record layer uses AES-256 in CBC mode, 
HMAC-SHA1

● openssl s_server -accept 4433 \
-no_comp -cipher DHE-RSA-AES256-SHA -www \
-cert serverCert.pem -key serverKey.pem



  

Demo:
ephemeral cipher suite



  

Decrypt TLS traffic using the master secret

● session resumption, ephemeral keys

– the server's private key is not sufficient
to decrypt TLS traffic

● provide the master secret to Wireshark directly

● key file
– RSA Session-ID:<sess_id> Master-Key:<master secret>

– CLIENT_RANDOM <client_random> <master secret>

– RSA <8 bytes enc pre-master secret> <pre-master secret>



  

How to create a key file

● Wireshark

– File / Export SSL session keys

– only when Wireshark can already decrypt the TLS traffic

● e.g. because it has the server's private key
● use OpenSSL's cached session info

– openssl sess_id -in s1.dat -noout -text

– some tweaking is required to get the data into the correct 
format

● applications based on NSS (e.g. chrome, firefox)

– export SSLKEYLOGFILE=./out.log && firefox



  

Demo:
TLS decryption using the 

master secret



  

Summary

● to understand TLS, start with simple 
scenarios

● Wireshark can decrypt TLS traffic
– using the server's private key
– using the master secret

● please let us know if you have some 
TLS traces that Wireshark doesn't 
fully support



  

Thank you for your attention.

Questions?               
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