

Einführung in SSL mit Wireshark

Chemnitzer Linux-Tage
16. März 2014

Martin Kaiser

What?

● SSL/TLS is the most widely used security
protocol on the Internet

● there's lots of parameters, options, extensions
that make it difficult to understand SSL/TLS

– create simple test scenarios to get started
● Wireshark can help analyze and understand

SSL/TLS

– in some cases, it's possible to decrypt
captured traffic

Overview

● purpose of TLS
● record layer
● handshake
● test setup
● Wireshark and TLS
● decrypting TLS traffic with Wireshark

About me
● writing embedded software for Digital TVs

● involved in creating the CI+ Pay-TV standard

● Wireshark Core Developer

● http://www.kaiser.cx

● Transport Layer Security

– successor of SSL

– TLS 1.2 defined in 2008, not widely deployed
● client and server

● runs on top of TCP

● transparent secure channel

– encryption

– authentication

– compression

TLS

Freedigitalphots/photostock

TLS overview

TCPTCP

TLS record layerTLS record layer

Application dataApplication data HandshakeHandshake AlertAlert Change cipher specChange cipher spec

Record layer

type version length

● the sequence number is not part of the message

● type is Application Data, Handshake, ...

● checksum is HMAC (key, hash algorithm)

● (compress-then-) sign-then-encrypt

sequence number

encryptedencrypted

signedsigned

data checksum padding

Key material
● pseudorandom function (PRF)

● pre-master secret (“result of the handshake”)

● master secret
= PRF(pre-master secret, client random, server random, ...)

● key block
= PRF(master secret, client random, server random, ...)

● split the key block into six keys
– client HMAC key, server HMAC key

– client encryption key, server encryption key

– client init vector (IV), server init vector

Handshake

● agree on a set of ciphers
● client verifies the server's identity
● calculate the pre-master secret
● derive master secret and required

keys
● verify the integrity of the handshake

messages

Handshake
client server

supported ciphers, random number

selected cipher, random number, certificate

encrypted pre-master secret

checksum of handshake messages

checksum of handshake messages

● verify server certificate
● create pre-master secret
● encrypt it with server's

public key

Test setup

● a simple TLS client and server

– OpenSSL command line tools
● server's private key

– openssl genrsa -out serverKey.pem 2048
● server certificate

– openssl req -x509 -new -key serverKey.pem \
-out serverCert.pem \
-subj "/C=DE/ST=Hessen/L=Frankfurt/
 O=private/OU=Martin Kaiser's server/
 CN=test.kaiser.cx/emailAddress=test@kaiser.cx"

Test client & server

● serve an info page on port 4433

– openssl s_server -accept 4433 \
-cipher AES256-SHA -no_comp -www \
-cert serverCert.pem -key serverKey.pem

– offer only one set of algorithms

– don't support compression
● client

– openssl s_client -no_ticket -tls1

– localhost:4433 is the default target

Wireshark and SSL/TLS

● SSL and TLS up to version 1.2 are supported

● ASN.1 framework
– dissect the server's X.509 certificate

– generate protocol dissectors from ASN.1 modules

● decrypt captured TLS traffic
– using the server's private key

– using the master secret

– gnutls, libgcrypt are required for this
● wireshark -v

Demo: capture TLS traffic

Useful Wireshark settings

● in our example, TCP port 4433 is SSL
→ Decode As

– this setting can be saved
● both client and server are on localhost

– add columns for source and destination port
● Display Filter ssl

● Follow TCP stream, Follow SSL stream

● Time Shift to see the time difference between
TLS messages

Cipher Suites

● Cipher Suite == a set of algorithms

– type of server's keypair

– algorithm used for negotiating
the pre-master secret

● some cipher suites use server's keypair
directly

– record-layer's encryption algorithm

– record-layer's MAC algorithm
● TLS_<key-exchange>_<auth>_WITH_<enc>_<mac>

Cipher Suite Example

● TLS_RSA_WITH_AES_256_CBC_SHA

– server has an RSA keypair

– RSA is used for pre-master secret calculation

– record layer encryption uses AES 256
in CBC mode for encryption

– record layer uses HMAC-SHA-1 for message
authentication

Decrypt TLS traffic using the server's private key

● Edit / Preferences / Protocols / SSL /
RSA keys list

● Protocol data simply shows the decrypted bytes

● Wireshark decrypts the pre-master secret,
calculates the master secret and the key block

Demo: decrypt TLS traffic

Export PDU mechanism

● strip off all layers below the TLS payload

● the resulting packets can be interpreted
without any key material

● File / Export PDUs to file

● experimental

Session resumption

● speed up the handshake, skip the public key calculations

● initial connection

– server assigns a session ID

– client and server cache the master secret
● subsequent connection

– client sends the session ID to resume the session

– client and server use the cached master secret
● new random numbers

→ unique key material for each connection
● decryption with the server's private key requires a

capture with the initial handshake

Session resumption in practice
● openssl s_client -no_ticket -tls1 -sess_out s1.dat

– cache information for session resumption
● openssl sess_id -in s1.dat -noout -text

– display the cached session info
● openssl s_client -no_ticket -tls1 -sess_in s1.dat

– resume a session based on cached information

Demo: session resumption

Ephemeral cipher suites

● use an ephemeral (short-lived) key for
generating the pre-master secret

– server's key pair is not used directly

– ephemeral key is linked to the
server's key pair

● additional handshake message
ServerKeyExchange

● forward secrecy:
if the server's private key is compromised, it
can't be used for decrypting captured TLS traffic

Testing an ephemeral cipher suite

● DHE-RSA-AES256-SHA

– server certificate contains an RSA keypair

– Diffie-Hellman is used for calculating the pre-
master secret

– the server signs its Diffie-Hellman public key with
its RSA private key

– the record layer uses AES-256 in CBC mode,
HMAC-SHA1

● openssl s_server -accept 4433 \
-no_comp -cipher DHE-RSA-AES256-SHA -www \
-cert serverCert.pem -key serverKey.pem

Demo:
ephemeral cipher suite

Decrypt TLS traffic using the master secret

● session resumption, ephemeral keys

– the server's private key is not sufficient
to decrypt TLS traffic

● provide the master secret to Wireshark directly

● key file
– RSA Session-ID:<sess_id> Master-Key:<master secret>

– CLIENT_RANDOM <client_random> <master secret>

– RSA <8 bytes enc pre-master secret> <pre-master secret>

How to create a key file

● Wireshark

– File / Export SSL session keys

– only when Wireshark can already decrypt the TLS traffic

● e.g. because it has the server's private key
● use OpenSSL's cached session info

– openssl sess_id -in s1.dat -noout -text

– some tweaking is required to get the data into the correct
format

● applications based on NSS (e.g. chrome, firefox)

– export SSLKEYLOGFILE=./out.log && firefox

Demo:
TLS decryption using the

master secret

Summary

● to understand TLS, start with simple
scenarios

● Wireshark can decrypt TLS traffic
– using the server's private key
– using the master secret

● please let us know if you have some
TLS traces that Wireshark doesn't
fully support

Thank you for your attention.

Questions?

Freedigitalphotos/Master Isolated Images

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

