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What?

● designing a security protocol is difficult

● “protocols live forever”

● open-source software is very useful for 
analyzing closed systems



  

Overview
● HDCP2

● Building blocks

● Authentication

● AKE protocol

● Problems with the AKE protocol

● Pairing, pairing data

● Breaking the AKE protocol

● Doing this on real devices

● Recap: What did we achieve?

● Summary



  

About me
● writing embedded software for Digital TVs

● involved in creating the CI+ Pay-TV standard

● Wireshark Core Developer

● http://www.kaiser.cx



  

HDCP2
● High-bandwidth Digital Content Protection, 

version 2
● secure transmission of premium

Audio-Video content

– one part of a DRM system
● HDCP2 != HDCP 



  

HDCP2 examples

● streaming of TV content
to a smartphone

– remote control app
● Miracast

– mirror the
smartphone screen
on the TV



  

Basic concepts

typical scenario: one transmitter, one receiver



  

● authentication
● renewability (revocation)
● transmission of payload data

Building blocks



  

HDCP2 authentication
● AKE (Authentication and Key Exchange)

– result: master key k
m

● locality check
● session key exchange

– result: session key k
s



  

AKE protocol
● transmitter verifies the receiver's identity

(i.e. the receiver's certificate)

● transmitter creates the master key k
m

● transmitter encrypts k
m
 (using RSA) and 

sends it to the receiver

● check that both parties have the same k
m

● make sure that k
m
 can be reused



  

AKE protocol in detail



  

What's wrong with AKE?
● Nothing, but ...

– transmitter is not authenticated
– messages are not signed
– receiver sends a random number - 

but it's not used in subsequent 
calculations



  

Pairing
● RSA calculation is time-consuming

● reuse the master key between the same two 
devices

– both devices must store the master key

– assumption: receiver can't do this
● the transmitter stores the receiver's copy of the 

master key

– receiver encrypts the master key with an 
internal secret key

– transmitter stores the encrypted version



  

Pairing data

transmitter stores pairing data

● encrypted k
m 

(from the pairing message)

● clear k
m

● initial value m (transmitter's random number)

● receiver ID

receiver encrypts the
master key k

m
for storing

by the transmitter



  

Receiver generates the pairing data
● receiver encrypts the

master key for storage

● encryption and decryption
are the same operation

– doing this twice
gives you back the
data in the clear

● don't ever reuse the
initial value m

– but this is based only on
data from the transmitter ;-)

input:
master key

output:
encrypted master 

key for storage

initial value

receiver's
secret key



  

Attacking the AKE protocol (I)
● capture an HDCP2 session including the AKE

– capture the initial value m

– capture encrypted k
m

– capture the verification value H'



  

Attacking the AKE protocol (II)
● run the AKE protocol as a transmitter

● receiver performs the calculation of pairing data

– trick it into using forged values

– the same initial value m as in the captured 
session

– encrypted k
m 

instead of clear k
m

● the receiver does not create paring data, it 
decrypts the pairing data from the captured 
session

– this recovers the clear master key k
m



  

Setup

● Samsung TV, Galaxy S2 phone

– TV is streaming to the phone's remote control 
application (dual view)

– TV is the transmitter, phone is the receiver
● HDCP2 does not specify how transmitter and 

receiver find each other

– Samsung uses DLNA

– we don't implement this, we just add our fake 
transmitter to the network and start sending...



  

Test network



  

Capture the AKE protocol

● HDCP2 AKE messages are simple

– always in the clear

– no context required for parsing them
● Wireshark HDCP2 dissector

– on top of TCP

– heuristic dissector, no well-known TCP port

– available in Wireshark >= 1.8



  

Fake AKE protocol



  

RSA encryption
● normally, the transmitter creates the master 

key k
m
 and encrypts it using RSA

– we encrypt the AES-encrypted k
m
 from the 

pairing data
● RSA encryption

– RSASSA OAEP with SHA256, MGF1 with 
SHA256

– not supported by OpenSSL at the time I tried 
this first

– libgcrypt can do this



  

Run the fake AKE protocol
● phone will only listen on the HDCP2 TCP port after 

successful DLNA discovery

– we let the phone and TV do the DLNA part

– phone does not restrict TCP connections to
the TV's address ;-)

– transmitter may initiate the AKE protocol at any 
time

● all messages can be pre-computed

– none of our fake transmitter messages depends 
on a previous (variable) answer from the receiver

● use Wireshark to parse the receiver's answers



  

We have the master key! Really?

● receiver calculates a verification value H' and sends it to the 
transmitter

– H' depends on the master key k
m

– we captured the H' of the original AKE protocol run

● transmitter calculates the same value and compares them

– can we calculate H==H' for the original AKE run?

● this needs HMAC-SHA256 and AES-CTR

– all supported by OpenSSL



  

Recap
● we can get the master key of a captured HDCP2 

authentication

– we just need to speak to the receiver for a 
moment

– the master key will be the same for all past and 
future sessions between the two devices

● this is a protocol weakness, it does not require a 
buggy implementation in one of the devices

● it's not enough for decrypting the AV content

– license constant lc
128

 is missing



  

Fixing this

● HDCP 2.2

● change the formula for the initial value

– m = r
tx 

|| r
rx

– the inital value depends on random numbers 
of both transmitter and receiver

– a fake transmitter cannot force the same 
initial value m

● an HDCP 2.2 device does not do pairing with an 
HDCP 2.1 device



  

Summary
● Protocols are complicated

– if possible, don't define your own protocol
● understand the limitations of cryptographic 

primitives you're using

● even for the closest of systems, open-source 
software helps to analyze and understand them

● adding your protocol to Wireshark is easy

– see my next talk ;-)



  

Thank you for your attention.

Questions?
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