

HDCP2
von den Schwierigkeiten,

ein Security-Protokoll zu entwerfen

OpenRheinRuhr
9. November 2013

Martin Kaiser

What?

● designing a security protocol is difficult

● “protocols live forever”

● open-source software is very useful for
analyzing closed systems

Overview
● HDCP2

● Building blocks

● Authentication

● AKE protocol

● Problems with the AKE protocol

● Pairing, pairing data

● Breaking the AKE protocol

● Doing this on real devices

● Recap: What did we achieve?

● Summary

About me
● writing embedded software for Digital TVs

● involved in creating the CI+ Pay-TV standard

● Wireshark Core Developer

● http://www.kaiser.cx

HDCP2
● High-bandwidth Digital Content Protection,

version 2
● secure transmission of premium

Audio-Video content

– one part of a DRM system
● HDCP2 != HDCP

HDCP2 examples

● streaming of TV content
to a smartphone

– remote control app
● Miracast

– mirror the
smartphone screen
on the TV

Basic concepts

typical scenario: one transmitter, one receiver

● authentication
● renewability (revocation)
● transmission of payload data

Building blocks

HDCP2 authentication
● AKE (Authentication and Key Exchange)

– result: master key k
m

● locality check
● session key exchange

– result: session key k
s

AKE protocol
● transmitter verifies the receiver's identity

(i.e. the receiver's certificate)

● transmitter creates the master key k
m

● transmitter encrypts k
m
 (using RSA) and

sends it to the receiver

● check that both parties have the same k
m

● make sure that k
m
 can be reused

AKE protocol in detail

What's wrong with AKE?
● Nothing, but ...

– transmitter is not authenticated
– messages are not signed
– receiver sends a random number -

but it's not used in subsequent
calculations

Pairing
● RSA calculation is time-consuming

● reuse the master key between the same two
devices

– both devices must store the master key

– assumption: receiver can't do this
● the transmitter stores the receiver's copy of the

master key

– receiver encrypts the master key with an
internal secret key

– transmitter stores the encrypted version

Pairing data

transmitter stores pairing data

● encrypted k
m

(from the pairing message)

● clear k
m

● initial value m (transmitter's random number)

● receiver ID

receiver encrypts the
master key k

m
for storing

by the transmitter

Receiver generates the pairing data
● receiver encrypts the

master key for storage

● encryption and decryption
are the same operation

– doing this twice
gives you back the
data in the clear

● don't ever reuse the
initial value m

– but this is based only on
data from the transmitter ;-)

input:
master key

output:
encrypted master

key for storage

initial value

receiver's
secret key

Attacking the AKE protocol (I)
● capture an HDCP2 session including the AKE

– capture the initial value m

– capture encrypted k
m

– capture the verification value H'

Attacking the AKE protocol (II)
● run the AKE protocol as a transmitter

● receiver performs the calculation of pairing data

– trick it into using forged values

– the same initial value m as in the captured
session

– encrypted k
m

instead of clear k
m

● the receiver does not create paring data, it
decrypts the pairing data from the captured
session

– this recovers the clear master key k
m

Setup

● Samsung TV, Galaxy S2 phone

– TV is streaming to the phone's remote control
application (dual view)

– TV is the transmitter, phone is the receiver
● HDCP2 does not specify how transmitter and

receiver find each other

– Samsung uses DLNA

– we don't implement this, we just add our fake
transmitter to the network and start sending...

Test network

Capture the AKE protocol

● HDCP2 AKE messages are simple

– always in the clear

– no context required for parsing them
● Wireshark HDCP2 dissector

– on top of TCP

– heuristic dissector, no well-known TCP port

– available in Wireshark >= 1.8

Fake AKE protocol

RSA encryption
● normally, the transmitter creates the master

key k
m
 and encrypts it using RSA

– we encrypt the AES-encrypted k
m
 from the

pairing data
● RSA encryption

– RSASSA OAEP with SHA256, MGF1 with
SHA256

– not supported by OpenSSL at the time I tried
this first

– libgcrypt can do this

Run the fake AKE protocol
● phone will only listen on the HDCP2 TCP port after

successful DLNA discovery

– we let the phone and TV do the DLNA part

– phone does not restrict TCP connections to
the TV's address ;-)

– transmitter may initiate the AKE protocol at any
time

● all messages can be pre-computed

– none of our fake transmitter messages depends
on a previous (variable) answer from the receiver

● use Wireshark to parse the receiver's answers

We have the master key! Really?

● receiver calculates a verification value H' and sends it to the
transmitter

– H' depends on the master key k
m

– we captured the H' of the original AKE protocol run

● transmitter calculates the same value and compares them

– can we calculate H==H' for the original AKE run?

● this needs HMAC-SHA256 and AES-CTR

– all supported by OpenSSL

Recap
● we can get the master key of a captured HDCP2

authentication

– we just need to speak to the receiver for a
moment

– the master key will be the same for all past and
future sessions between the two devices

● this is a protocol weakness, it does not require a
buggy implementation in one of the devices

● it's not enough for decrypting the AV content

– license constant lc
128

 is missing

Fixing this

● HDCP 2.2

● change the formula for the initial value

– m = r
tx

|| r
rx

– the inital value depends on random numbers
of both transmitter and receiver

– a fake transmitter cannot force the same
initial value m

● an HDCP 2.2 device does not do pairing with an
HDCP 2.1 device

Summary
● Protocols are complicated

– if possible, don't define your own protocol
● understand the limitations of cryptographic

primitives you're using

● even for the closest of systems, open-source
software helps to analyze and understand them

● adding your protocol to Wireshark is easy

– see my next talk ;-)

Thank you for your attention.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

